DEPARTMENT OF BIOLOGY

BIO2010: Cell Biology and Biochemistry Lecture (3 units)

Spring 2023

Meeting days: M/W/F	Instructor: Dr. Dave Cummings
Meeting times: 12:15-1:10 pm	Phone: 619-849-2642
Meeting location: Latter 2	Email: davidcummings@pointloma.edu
Final Exam: F 5/5/23 10:30 am	Office location: Rohr Science 176
Additional info: See separate lab syllabus	Office Hours: Mondays 2 – 5 pm

COURSE DESCRIPTION

An introduction to the principles of cell biology, molecular biology, and biochemistry. Topics include the chemical basis of life, basic membrane functions and membrane transport, basic metabolic pathways including cellular respiration and photosynthesis, cell division, and expression of the genetic material. Lecture and lab. Offered every semester.

Prerequisite(s): Must have a previous course in high school or university-level chemistry.

COURSE LEARNING OUTCOMES

The overarching goal of this course is to prepare students for subsequent in-depth coursework in Biology, Biology-Chemistry, and health sciences.

By the end of this course, students will be able to:

- 1) Understand basic principles of the inner function of cells, including how cells obtain and use energy through cellular respiration and/or photosynthesis, how membranes regulate cellular composition, how cells organize and communicate within a multicellular organism, and how genetic material is copied and converted to phenotypic information. (PLO #1)
- 2) Apply content to various scenarios in order to describe how a cell would react under changing environmental conditions, and relate problems associated with malfunctions in various important cellular processes. (PLO #1)
- 3) Evaluate current bioethical issues from an understanding of science and our moral responsibilities as Christians. (PLO #3)
- 4) Utilize skills and techniques critical to experimentation in a cell and molecular biology laboratory setting. (PLO #1)

- 5) Design scientific experiments with appropriate controls and analyze scientific data, demonstrating knowledge of the purpose, experimental method, data, and basic statistical interpretation. (PLO #1)
- 6) Demonstrate critical thinking skills related to scientific methods, data analysis, and conclusions. (FELO 1d; Select questions on the final exam will be used to assess FELO 1d. Critical Thinking: Students will be able to examine, critique, and synthesize information in order to arrive at reasoned conclusions).

REQUIRED RESOURCES

1. **Textbook + Online Learning Platform:** Brooker et al. (3rd edition) Principles of Biology. Buying options depending on your major:

Option A. Biology, Biology-Chemistry, and Environmental Science majors: Hard copy with a 1-semester Connect code: ISBN: 9781264079803 (looseleaf or hardcover)

Option B. Applied Health, Dietetics, Chemistry, or other majors: Etext with a 1-semester Connect code: ISBN: 9781307005448 (looseleaf or hardcover options are fine as well, just more expensive)

*If you obtain the text from a separate source, you will need to purchase the 1-semester Connect access through CANVAS once the course has been published.

2. Lab Manual: Available as a course reader from Cognella. Available in the University bookstore or online at https://store.cognella.com/24942. REQUIRED IMMEDIATELY.

ASSESSMENT AND GRADING

Practice exams	140 pts (16%)
Regular exams	450 pts (45%)
SmartBook	120 pts (10%)
Peer teaching	40 pts (4%)
Laboratory experience	250 pts (25%)
TOTAL	1,000 pts (100%)

Latter Grade Scale Based on Percentages

A	В	C	D	F
A 93-100	B+ 87-89	C+ 77-79	D+ 67-69	F Less than 59
A- 90-92	В 83-86	C 73-76	D 63-66	
	B- 80-82	C- 70-72	D- 60-62	

^{*}A minimum grade of C (73%) in this course is required to advance to Genetics. A grade of C-(72%) or lower is not acceptable for advancement to Genetics.

Practice exams (160 points) – Before each regular exam, you will take an open-notes/book practice exam (40 points each) in order to help you identify areas where more preparation is needed. Practice exams will be taken in Canvas using Honorlock.

Regular exams (450 points) – There will 3 midterms (100 pts each) and a final exam (150 pts). Each exam will consist of multiple choice and short answer questions and/or calculation problems. Up to 10% of points on exams 2 and 3 and up to 33% of the final exam points may come directly from previous material (cumulative).

*If you have a conflict with an exam date/time, you must let the instructor know at least one week in advance. Makeup exams will be at the discretion of the instructor. The final exam must be taken at the scheduled place and time.

SmartBook (120 points) – SmartBook assignments (10 points each) are on assigned reading that we have not yet covered in class. There are also optional practice problems through SmartBook that have been designed to provide additional opportunities to practice applying key concepts. These problems mirror concepts and higher-order learning assessments that you will see on exams.

Peer teaching (40 points) – On select days (see calendar), for 15-20 minutes at the beginning of class, we will break into peer groups, where one student in the group will teach the others a particular topic. Topics are listed in the tentative course schedule. The teaching student will be required to turn in a <u>study guide of the topic in outline format</u>. Points are awarded according to the degree of preparedness and the quality of the study guide. You are allowed to swap weeks with another student in your group, assuming you both agree, but you must inform me of the swap ahead of time. (4 x 10 points each)

Laboratory experience (250 points) – The BIO2010 lab is designed to expose the student to some of the essential tools of the scientist in a safe, controlled environment. Please see the separate lab syllabus for details.

PLANNED CLASS SCHEDULE

Week	Day	Topic (tentative)	Pre-class video	Assignment due
	Tue	Syllabus and course	Course introduction	
Week 1	1/10	introduction		
	Wed	CH 1 Scientific method	Scientific method	
	1/11			
	Fri	CH 1 Data and statistics		
	1/13	CH 2 Valence and		
		chemical bonding		
	Mon	MARTIN I	UTHER KING JR. DA	Y (NO CLASSES)
	1/16			
Week 2	Wed	CH 2 Electronegativity	Intro to the basics of	SmartBook CH 2
WCCK 2	1/18	and polar covalent bonds	electronegativity	
	Fri	CH 3 Macromolecules:	Polymerization of	PT1: The Scientific Method
	1/20	lipids and carbohydrates	biological	
			macromolecules	
	Mon	CH 3 Peptide bonds,	Functions and	
	1/23	amino acids, proteins	characteristics of	
Week 3			proteins	
WCCK 5	Wed	CH 3 Protein structure	Intro to protein	SmartBook CH 3
	1/25		structure	
	Fri		Protein structure	PT2: Four Macromolecules
	1/27			
	Mon	CH 4 Genomes and	Cell theory & basic	SmartBook CH 4
	1/30	proteomes	properties of cells	
	Wed	CH 4 Organelles and	Major aspects of	Practice Exam 1 due by midnight
Week 4	2/1	protein targeting	organelles	
	Fri	Exam #1: Chapters 1 – 4		
	2/3			
	Mon	CH 5 Membrane fluidity,	General membrane	
	2/6	selective permeability, and	structure and the fluid	
		membrane proteins	mosaic model	
Week 5	Wed	CH 5 Channels and	Osmosis	SmartBook CH 5
	2/8	membrane transport		
	Fri	Finish CH 5 concepts		PT3: Membrane Transport
	2/10	Review of exam 1		
Week 6	Mon	CH 6 Coupled transport,	Laws of	
	2/13	endergonic vs. exergonic	thermodynamics	
		reactions	Potential vs. kinetic	
			energy	

	Wed 2/15	CH 6 Enzymes and cellular energy diagrams	Introduction to enzymes	SmartBook CH 6A
	Fri 2/17	CH 6 Glycolysis and tricarboxylic acid (TCA) cycle	Introduction to cellular respiration Redox rxns	PT1: Enzymes
	Mon	CH 6 Oxidative		SmartBook CH 6B
	2/20 Wed	phosphorylation	E1 - 4 4	DT2. A such is Calledon Description
Week 7	2/22	CH 6 Fermentation and Cellular respiration	Electron transport chain review	PT2: Aerobic Cellular Respiration
	Fri	Catch-up/Review for	chain review	Practice Exam 2 due by midnight
	2/24	Exam #2		Fractice Exam 2 due by inidingin
	Mon 2/27	Exam #2: Chapters 5 – 6	l	
	Wed	CH 7 Photosynthesis: light	Introduction to	SmartBook CH 7
Week 8	3/1	reactions (linear and cyclic)	photosynthesis	
	Fri	CH 7 Photosynthesis:		PT3: Light and Dark Reactions of
	3/3	Calvin cycle and		Photosynthesis
		generating sugars		
Week 9			SPRING BREAK	
		_	3/6-3/10	
	Mon	CH 8 Threshold and cell	Introduction to cell	
	3/13	signaling concepts	signaling; leptin	
Week 10	Wed	CH 8 Signaling cascades	Modes of cell	SmartBook CH 8
	3/15	and second messengers	signaling	
	Fri		Griffith's	PT1: Signaling cascades and
	3/17		experiments	second messengers
	Mon	CH 9 Semi-conservative	The structure of the	
	3/20	replication	DNA helix	
	0.20	Meselson and Stahl		
		experiments		
W/2 s 1- 1 1	Wed	CH 9 DNA polymerase	How to make	SmartBook CH 9
Week 11	3/22	restrictions and bi-	replication rapid	
		directional synthesis		
	Fri	CH 9 Bi-directional	Mutations and	PT2: DNA Replication
	3/24	synthesis activity	proofreading	
	Mon	CATCH UP DAY +		PT3: Mutations and Proofreading
	3/27	REVIEW		Practice Exam 3 due by midnight
	Wed	Exam #3: Chapters 7 – 9		
Week 12	3/29			

	Fri	CH 10 Transcription	Overview of central	
	3/31		dogma and gene	
			expression stages	
	Mon	CH 10 Transcription and	RNA processing	
	4/3	translation		
Week 13	Wed	CH 10 Translation	EPA sites in	SmartBook CH 10
	4/5		translation	
	Fri		EASTER BREAK	<
	4/7		4/6-4/10	
	Mon		EASTER BREAK	ζ
	4/10		4/6-4/10	
337 1 14	Wed	CH 10 Catch-up and	Mutations and effects	
Week 14	4/12	discuss mutations	on phenotype	
	Fri	CH 14 Chromosomes and	Karyotyping	PT1: Transcription and
	4/14	sister chromatids		Translation (Gene Expression)
	Mon	CH 14 Cell cycle, cancer,	Overview of cell	
	4/17	and mitosis	cycle and CDKs	
	Wed	CH 14 Meiosis		SmartBook CH 14
Week 15	4/19			
	Fri	CH 15 Introduction to		PT2: Mitosis and Meiosis
	4/21	Mendelian Genetics and		
		Punnett squares		
	Mon	CH 15 Relating genetic inhe	eritance to events in	PT3: Mendelian Genetics
	4/24	meiosis		
Week 16				
	Wed	CH 15 Non-Mendelian inheritance		SmartBook CH 15
	4/26			
	Fri	Final Exam Review Day		Practice Exam 4 due by midnight
	4/28			on Wed 5/3

Fri	FINAL EXAM (10:30 am – 1 pm)
5/5	

POLICY STATEMENTS

PLNU Mission To Teach ~ To Shape ~ To Send

Point Loma Nazarene University exists to provide higher education in a vital Christian community where minds are engaged and challenged, character is modeled and formed, and service is an expression of faith. Being of Wesleyan heritage, we strive to be a learning community where grace is foundational, truth is pursued, and holiness is a way of life.

COURSE CREDIT HOUR INFORMATION

In the interest of providing sufficient time to accomplish the stated Course Learning Outcomes, this class meets the PLNU credit hour policy for a 4-unit class delivered over 16 weeks. It is anticipated that students will spend a minimum of 37.5 participation hours per credit hour on their coursework. For this course, students will spend an estimated 150 total hours meeting the course learning outcomes. The time estimations are provided in the Canvas modules.

STATE AUTHORIZATION

State authorization is a formal determination by a state that Point Loma Nazarene University is approved to conduct activities regulated by that state. In certain states outside California, Point Loma Nazarene University is not authorized to enroll online (distance education) students. If a student moves to another state after admission to the program and/or enrollment in an online course, continuation within the program and/or course will depend on whether Point Loma Nazarene University is authorized to offer distance education courses in that state. It is the student's responsibility to notify the institution of any change in his or her physical location. Refer to the map on State Authorization to view which states allow online (distance education) outside of California.

PLNU COPYRIGHT POLICY

Point Loma Nazarene University, as a non-profit educational institution, is entitled by law to use materials protected by the US Copyright Act for classroom education. Any use of those materials outside the class may violate the law.

PLNU ACADEMIC HONESTY POLICY

Students should demonstrate academic honesty by doing original work and by giving appropriate credit to the ideas of others. Academic dishonesty is the act of presenting information, ideas, and/or concepts as one's own when in reality they are the results of another person's creativity and effort. A faculty member who believes a situation involving academic dishonesty has been detected may assign a failing grade for that assignment or examination, or, depending on the seriousness of the offense, for the course. Faculty should follow and students may appeal using the procedure in the university Catalog. See <u>Academic Policies</u> for definitions of kinds of academic dishonesty and for further policy information.

PLNU ACADEMIC ACCOMMODATIONS POLICY

While all students are expected to meet the minimum standards for completion of this course as established by the instructor, students with disabilities may require academic adjustments, modifications or auxiliary aids/services. At Point Loma Nazarene University (PLNU), these students are requested to register with the Disability Resource Center (DRC), located in the Bond Academic Center (DRC@pointloma.edu or 619-849-2486). The DRC's policies and procedures for assisting such students in the development of an appropriate academic adjustment plan (AP) allows PLNU to comply with Section 504 of the Rehabilitation Act and the Americans with Disabilities Act. Section 504 prohibits discrimination against students with special needs and guarantees all qualified students equal access to and benefits of PLNU programs and activities. After the student files the required documentation, the DRC, in conjunction with the student, will develop an AP to meet that student's specific learning needs. The DRC will thereafter email the student's AP to all faculty who teach courses in which the student is enrolled each semester. The AP must be implemented in all such courses.

If students do not wish to avail themselves of some or all of the elements of their AP in a particular course, it is the responsibility of those students to notify their professor in that course. PLNU highly recommends that DRC students speak with their professors during the first two weeks of each semester about the applicability of their AP in that particular course and/or if they do not desire to take advantage of some or all of the elements of their AP in that course.

PLNU ATTENDANCE AND PARTICIPATION POLICY

Regular and punctual attendance at all **synchronous** class sessions is considered essential to optimum academic achievement. If the student is absent for more than 10 percent of class sessions (virtual or face-to-face), the faculty member will issue a written warning of deenrollment. If the absences exceed 20 percent, the student may be de-enrolled without notice until the university drop date or, after that date, receive the appropriate grade for their work and participation. In some courses, a portion of the credit hour content will be delivered **asynchronously** and attendance will be determined by submitting the assignments by the posted due dates. See <u>Academic Policies</u> in the Undergraduate Academic Catalog. If absences exceed these limits but are due to university excused health issues, an exception will be granted.

Asynchronous Attendance/Participation Definition

A day of attendance in asynchronous content is determined as contributing a substantive note, assignment, discussion, or submission by the posted due date. Failure to meet these standards will result in an absence for that day. Instructors will determine how many asynchronous attendance days are required each week.

SPIRITUAL CARE

Please be aware PLNU strives to be a place where you grow as whole persons. To this end, we provide resources for our students to encounter God and grow in their Christian faith.

If students have questions, a desire to meet with the chaplain or have prayer requests you can

contact the Office of Spiritual Development

USE OF TECHNOLOGY

In order to be successful in the online environment, you'll need to meet the minimum technology and system requirements; please refer to the <u>Technology and System Requirements</u> information. Additionally, students are required to have headphone speakers compatible with their computer available to use. If a student is in need of technological resources please contact <u>student-tech-request@pointloma.edu</u>.

Problems with technology do not relieve you of the responsibility of participating, turning in your assignments, or completing your class work.

INCOMPLETES AND LATE ASSIGNMENTS

All assignments are to be submitted/turned in by the beginning of the class session when they are due—including assignments posted in Canvas. Incompletes will only be assigned in extremely unusual circumstances.

FINAL EXAMINATION POLICY

Successful completion of this class requires taking the final examination **on its scheduled day**. The final examination schedule is posted on the <u>Class Schedules</u> site.