Instructor

Laurance Beauvais,

Associate Professor of Chemistry

Office: Sator 206 Phone: x3251

Email: lbeauvais@pointloma.edu

Office Hours:

To be set in class And by appointment Course Meeting Times MWF 12:15 – 1:20 pm

RLC 104

Laboratory (Sator Hall 216)

Section 1: Tuesday, 8:00 – 11:00 am Section 2: Tuesday, 1:30 – 4:30 pm Section 3: Wednesday, 2:45 – 5:45 pm

Course: CHE3070-1 FA21 - Instrumental Analysis

Textbook

Harris & Lucy, *Quantitative Chemical Analysis*, 10th Edition.

Additional readings from the current literature will routinely be assigned; these can be found on the course website.

Course Website

https://canvas.pointloma.edu/

Additional readings, practice problems, exam keys, and extra copies of class handouts will be available *only* on the course website. The detailed class schedule is available on canvas.

Group Literature Presentations

A major objective for this course is for you to be able to think critically about real-world applications of chemical instrumentation. With this goal in mind, the class will conduct group discussions of journal articles describing recent applications in chemical instrumental analysis.

During each presentation day, as a *participant*, you'll receive credit for coming prepared to class and actively participating in the discussion. Once during the semester, as *presenters*, your group will receive credit for leading the discussion (including giving an 8-10 minute group presentation introducing the paper, leading a brief discussion of the instrumental method and relevant issues it brings up, and turning in a 1-2 page abstract).

Homework Problems

Homework problems will be assigned for each topic. The problems typically come from the textbook and will be turned in on canvas. The problems will be graded based on *participation* and *effort*.

Recommended Practice Problems

Periodically, sets of recommended problems will be provided to give you an opportunity to practice applying concepts from class and to give an idea of what you can expect on course exams. These problems are optional and will not be graded; the solutions will be posted on the course website.

Exams

There will be two exams (one hour each). See the course schedule for the dates of the exams.

Makeup examinations will be given only for excused absences. In such cases, appropriate documentation must be provided within two working days of the end of the excused absence.

Laboratory

Carefully-selected laboratory exercises will give you an opportunity to apply both theoretical and technical aspects of chemical instrumental analysis. Patience, critical thinking, and intellectual independence will serve you well in this laboratory!

Attendance and class participation

Regular attendance is crucial to success in Chem 3070 and you will be graded based on participation in class discussions and worksheets. Students who miss class for any reason are responsible for anything covered in that class (including announcements). Students who miss 20% of the total class meetings (4 meetings) may be dropped from the course. See <u>Academic Policies</u> in the Undergraduate Academic Catalog.

Grades

	Total	100%
	Exams (2)	40%
	Laboratory	30%
	Homework	10%
	Class Participation	10%
Your final grade will be determined as follows:	Group Literature Presentations	10%

Grade cutoffs will be: A, 100-90; B, 90-80; C, 80-70; D, 70-60; F, 60 and below.

Academic Integrity

All students enrolled in this course are expected to adhere to the highest standards of academic integrity. If you are uncertain of the legitimacy of a particular action, you should contact the course instructor and request clarification.

- Collaboration with other students on the experiment, data collection, and data analysis for laboratory reports is encouraged, but the report should be your own.
- Use of any unauthorized aids, or aiding other students on exams is prohibited.
- Improper use of sources on lab reports and/or group literature abstracts is both illegal and unethical, and is grounds for a failing grade.
- Assignments and exams from this course may not be committed to dorm repositories or otherwise be used to help future students.

A faculty member who believes a situation involving academic dishonesty has been detected may assign a failing grade for that assignment or examination, or, depending on the seriousness of the offense, for the course. Faculty should follow and students may appeal using the procedure in the university Catalog. See <u>Academic Policies</u> for definitions of kinds of academic dishonesty and for further policy information.

Academic Accommodations

PLNU is committed to providing equal opportunity for participation in all its programs, services, and activities. Students with disabilities may request course-related accommodations by contacting the Educational Access Center (EAC), located in the Bond Academic Center (EAC@pointloma.edu or 619-849-2486). Once a student's eligibility for an accommodation has been determined, the EAC will issue an academic accommodation plan ("AP") to all faculty who teach courses in which the student is enrolled each semester.

PLNU highly recommends that students speak with their professors during the first two weeks of each semester/term about the implementation of their AP in that particular course and/or if they do not wish to utilize some or all of the elements of their AP in that course.

Students who need accommodations for a disability should contact the EAC as early as possible (i.e., ideally before the beginning of the semester) to assure appropriate accommodations can be provided. It is the student's responsibility to make the first contact with the EAC.

CHE3070 Goals	CHE3070 Outcomes
Students will:	Students will be able to:
1. learn how to select an appropriate instrumental method	 a. identify strengths and limitations of instrumental methods (including UV-Vis absorption spectroscopy, atomic absorption and emission spectroscopy, IR spectroscopy, atomic and molecular mass spectrometry, and gas- and liquid-chromatography) b. compare instrumental methods with respect to precision, detection limit, linear range and selectivity c. employ standards in instrumental analyses, including internal and external standards, and the method of standard addition
2. understand the relationship between signal and noise	 a. identify sources of noise (both general and method-specific) and strategies for reducing each type b. calculate the signal-to-noise ratio for a particular data set c. calculate the number of scans required to improve signal-to-noise ratio by a specified amount
3. understand the theory behind chemical instruments	 a. draw a diagram to represent the energy changes during various types of spectroscopy b. convert between wavelength, frequency, wavenumbers, and energy of electromagnetic radiation c. describe the chemical phenomenon responsible for a particular signal d. convert between absorbance and % transmittance e. determine the concentration of an unknown sample using Beer's Law f. describe sources of deviation from Beer's Law and strategies for preventing or correcting the deviation g. using UV-vis, IR, and/or mass spectral data, predict the structure of an unknown molecule h. using experimental data, determine the column efficiency and resolution for a chromatographic separation
4. learn the components of chemical instruments	 a. identify the major components in several types of chemical instrumentation and explain how they work b. draw a block diagram for a particular instrument or configuration c. justify the choice of a particular component, configuration, or experimental condition in an instrumental method
5. apply knowledge of instrumental analysis to realworld problems	 a. perform UV-vis, ICP-OES, and IR spectroscopy; and gas- and liquid-chromatography and analyze the resulting data b. present an article from the recent chemical literature highlighting the instrumental method used, and write a brief abstract summarizing the key points from the article you presented c. write a concise and clear report describing the background, experimental procedure, results, data analysis, and conclusions of an instrumental analysis

Program Learning Outcomes: CHEM PLO 2 (HPLC) and ENVS PLO 3 (HPLC, ICP, IR, UV-vis) will be assessed directly by faculty laboratory instructors' observation of students' use of instruments.

PLNU Mission

To Teach ~ To Shape ~ To Send

Point Loma Nazarene University exists to provide higher education in a vital Christian community where minds are engaged and challenged, character is modeled and formed, and service is an expression of faith. Being of Wesleyan heritage, we strive to be a learning community where grace is foundational, truth is pursued, and holiness is a way of life.

STATE AUTHORIZATION

State authorization is a formal determination by a state that Point Loma Nazarene University is approved to conduct activities regulated by that state. In certain states outside California, Point Loma Nazarene University is not authorized to enroll online (distance education) students. If a student moves to another state after admission to the program and/or enrollment in an online course, continuation within the program and/or course will depend on whether Point Loma Nazarene University is authorized to offer distance education courses in that state. It is the student's responsibility to notify the institution of any change in his or her physical location. Refer to the map on State Authorization to view which states allow online (distance education) outside of California.

PLNU COPYRIGHT POLICY

Point Loma Nazarene University, as a non-profit educational institution, is entitled by law to use materials protected by the US Copyright Act for classroom education. Any use of those materials outside the class may violate the law.

PLNU ACADEMIC HONESTY POLICY

Students should demonstrate academic honesty by doing original work and by giving appropriate credit to the ideas of others. Academic dishonesty is the act of presenting information, ideas, and/or concepts as one's own when in reality they are the results of another person's creativity and effort. A faculty member who believes a situation involving academic dishonesty has been detected may assign a failing grade for that assignment or examination, or, depending on the seriousness of the offense, for the course. Faculty should follow and students may appeal using the procedure in the university Catalog. See <u>Academic Policies</u> for definitions of kinds of academic dishonesty and for further policy information.